FLOMEKO2019

Design of a Calibration System for Miniature Carbon Dioxide Sensors

Mengna Li, Heming Hu National Institute of Metrology, China

Background

Home / Outcomes / Projects

IG3IS

• Target

Aiming to provide the most advanced and timely emission system

Asia (Region II)

• Objective #3

Beijing-Tianjin-Hebei City Cluster Carbon Monitoring Project

Sub-project

 High-density Observation Network of Miniature Carbon Dioxide Sensors

Background

Quantifying CO₂ emission

- Multi-point observation method using fixed stations or vehicles.
- Low-cost but accurate sensor is preferable.

Miniature NDIR sensors

- Small, lightweight and inexpensive.
- The accuracy is affected by facotrs such as pressure, temperature and length of use.

Objective

- to explore the principle of NDIR sensors.
- develop a feasible calibration method to improve the
 - precison and accuracy of miniature CO2 sensors.

Sensor overview

Operating principle

There are two phases in the cycle: IR_Low -> the IR source is off, background IR_High -> the IR source is on, attenuation IR_Signal = IR_High - IR_Low

A SenseAir CO2 sensor

Range 0 - 5000 ppm Accuracy 30ppm, 3%

Measure of concentration

Method

Apparatus and Connections

Connections

external vents, pump and drying chamber.

BME280 sensor

providing measurement of the pressure and temperature

Thermostat

K30 sensor and BME sensor are placed in it

Picarro G2311-f analyzer

providing high-precision CO2 concentration value

Transmission calculation model

The Beer-Lambert Law

$$I = I_0 e^{-c\sigma L} \qquad \tau = I/I_0$$

$$\tau = \frac{1}{\Delta \upsilon} \exp\left(-\sum_i S_i (T) \varphi_i(T, P, \upsilon) \frac{PXN_A}{RT} L\right) d\upsilon$$

The linear function Lorentz distribution

$$\varphi(T, P, \upsilon) = \frac{\alpha_L}{\pi[(\upsilon - \upsilon_0)^2 + \alpha_L^2]}$$

Spectral line strength

$$S = S(T_s) \frac{Q_V(T_s)Q_r(T_s)}{Q_V(T)Q_r(T)} ex p\left[\frac{1.439E''(T-T_s)}{TT_s}\right]$$

$$Q_V(T) = 1.05385 - 8.11142 \times 10^{-4}T + 3.18772 \times 10^{-6}T^2$$

 $Q_r(T) = Q_r(T_s)(\frac{T}{T_s})$

HITRAN2016 Dataset

Units	<u>C</u> Fortran Format	Err	Ref
	<u>12</u>		
	<u>I1</u>		
cm ⁻¹	<u>F12.6</u>	~	~
cm ⁻¹ /(molec·cm ⁻²)	<u>E10.3</u>		-
s ⁻¹	<u>E10.3</u>		
cm ⁻¹ ∙atm ⁻¹	<u>F5.4</u>	~	~
cm ⁻¹ ·atm ⁻¹	<u>F5.3</u>	~	~
cm ⁻¹	<u>F10.4</u>		
	<u>F4.2</u>	~	~
cm ⁻¹ ·atm ⁻¹	<u>F8.6</u>	~	-
	Units cm ⁻¹ cm ⁻¹ /(molec-cm ⁻²) s ⁻¹ cm ⁻¹ ·atm ⁻¹ cm ⁻¹ .atm ⁻¹ cm ⁻¹	Units C Fortman Format I2 I1 cm ⁻¹ F12.6 cm ⁻¹ /(molec·cm ⁻²) E10.3 s ⁻¹ E10.3 cm ⁻¹ .atm ⁻¹ F5.4 cm ⁻¹ .atm ⁻¹ F5.3 cm ⁻¹ .atm ⁻¹ F10.4 cm ⁻¹ .atm ⁻¹ F10.4 cm ⁻¹ .atm ⁻¹ F10.4 cm ⁻¹ .atm ⁻¹ F10.4	Units C Fortran Format Err 12 11 cm ⁻¹ F12.6 ✓ cm ⁻¹ /(molec-cm ⁻²) E10.3 ✓ s ⁻¹ E10.3 ✓ cm ⁻¹ .atm ⁻¹ F5.4 ✓ cm ⁻¹ .atm ⁻¹ F5.3 ✓ cm ⁻¹ .atm ⁻¹ F10.4 ✓ cm ⁻¹ .atm ⁻¹ F10.4 ✓ cm ⁻¹ .atm ⁻¹ F10.4 ✓ f4.2 ✓

中国计量科学研究院 National Institute of Metrology, China

Transmission calculation model

Experimentally observed data

Temperature and pressure by BME

Observed signal by K30 and Picarro analyzer

Theoretical transmission calculation

Theoretical Transmission

The non-linear curves of tansmssion as a function

of temperature and pressure obtained.

Variables Dependence

The concentration is sufficient to make the CO2 effectively opaque in spectral region at higher pressure.

Result and Analysis

Fitting transmission to observed signal

中国计量科学研究院 National Institute of Metrology, China

Result and Analysis

The output of the K30 sensor was corrected based on the regression analysis . Comparison between the CO2 concentration measured by Picarro-G2311f and corrected result of K30 sensor is made.

The relative root mean squared error (RRMS) difference of the corrected value is 0.46%. A good agreement between the corrected value of K30 sensor and the measurement of Picarro analyzer.

Conclusion

01

The principle of minature NDIR sensors is explored. A theoretical transmission model is established.

Variables dependence, including temperature and pressure, of the sensor is explored.

02

03

A calibration method of miniature CO2 sensors K30 is developed.

Future work

To quantify the interference of H2O, further experiment can be conducted at a series of fixed H2O values

THANKS

Design of a Calibration System for Miniature Carbon Dioxide Sensors

limn@nim.ac.cn 28 June 2019

